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Abstract

The paper presents an investigation of the accuracy and efficiency of artificial compressibility, characteristics-based
(CB) schemes for variable-density incompressible flows. The CB schemes have been implemented in conjunction with a
multigrid method for accelerating numerical convergence and a fourth-order, explicit Runge–Kutta method for the
integration of the governing equations in time. The implementation of the CB schemes is obtained in conjunction with
first-, second- and third-order interpolation formulas for calculating the variables at the cell faces of the computational
volume. The accuracy and efficiency of the schemes are examined against analytical and experimental results for diffu-
sion broadening in two- and three-dimensional microfluidic channels, a problem that has motivated the development of
the present methods. Moreover, unsteady, inviscid simulations have been performed for variable-density mixing layer.
The computations revealed that accuracy and efficiency depend on the CB scheme design. The best multigrid conver-
gence rates were exhibited by the conservative CB scheme, which is obtained by the fully conservative formulation of
the variable-density, incompressible equations.
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1. Introduction

Even though there are a number of studies that have been concerned with the development of pressure
projection methods for variable-density flows [1,2], the development of numerical methods for these flows
in the framework of artificial compressibility has received scant attention in the literature. In [3], three
numerical formulations for the governing equations for variable-density flows, all based on the artificial
compressibly approach [4], were presented. On the basis of these formulations, characteristics-based
schemes were derived along similar lines as for compressible [5] and constant-density incompressible flows
[6,7]. The variants of CB schemes derived in [3], labeled as transport, conservative and hybrid, differed with
respect to the formulation of the transport equation for total density and the use of divergence-free condi-
tion. The transport CB scheme reconstructs numerically species and total densities along the streamlines,
while in the conservative CB scheme pseudo-compressibility terms are added into the reconstruction formu-
las for the density. Finally, the hybrid CB scheme reconstructs the densities along the streamlines, similar to
the transport CB scheme, while the eigenvalues of the system of equations are the same with the eigenvalues
of the conservative CB scheme.

In this paper, we present the numerical implementation of the artificial compressibility CB schemes in
conjunction with multigrid techniques. Implementation of different variants of multigrid methods in con-
junction with the artificial compressibility approach have been presented in the literature for computations
of laminar flows [8,9], free surface flows (based on Euler simulations) [11], turbulent flows [12,13], incom-
pressible low-Mach number flows [14], as well as using adaptive grids [9] and adaptive solvers [15]. Pertinent
to the multigrid implementation for AC are also research works on multigrid methods for the precondi-
tioned Euler/Navier–Stokes equations for low-Mach number, steady and unsteady flows [16–19]. The com-
bination of multigrid methods and artificial compressibility in the context of different variable-density
formulations has not been previously discussed in the literature, thus motivating a detailed numerical inves-
tigation. Therefore, numerical tests have been performed for three flow problems: (i) diffusion broadening
in a two-dimensional microfluidic channel; (ii) diffusion broadening in a three-dimensional microfluidic
channel; and (iii) time-dependent evolution of variable density mixing layer.

Microfluidics have been a research subject of increasing interest in the past few years, mainly because
of the wide range of practical applications. Two-fluid laminar flow at low Reynolds numbers are exten-
sively used in chemical separation, extraction and detection [20–23] as well as in microreactors [24],
micromixing devices [25] and biotechnology [26]. An extensive review of microfluidic devices applica-
tions in biotechnology and organic chemistry can be found in [29]. Another important application of
microfluidics is in microfabrication [28], where liquid interfaces are created by laminar flow in micro-
fluidic channels. In all the above applications, the characteristic microchannel dimensions are of order
102 lm which is still in the domain of continuum mechanics simulations [27]. The Reynolds numbers
occurring in these applications range from Re � 1 (flow sensors, heat sink channels, capillary tubes
[35]), Re � 10�1�102 (e.g., in diffusion broadening [31] and micromixers [34]) to Re > 103 (microvalves,
micronozzles/pumps [35]).

When two miscible species are supplied via separated inlets into a channel with rectangular cross
section they will result in the development of a diffusion front (see Fig. 1). This problem has been stud-
ied experimentally, analytically and numerically by a number of researchers. Ismagilov et al. [30] ana-
lyzed the advection–diffusion equations for a fully developed three-dimensional flow and indicated that
the diffusion front position power-law dependency on the streamwise direction (i.e., along the channel)
varies from 0.5 in the middle of the channel to 1/3 near the channel wall. These results were found to
be in agreement with both experimental data [30,31] as well as numerical solutions [31]. The latter were
obtained by solving the Navier–Stokes equations for the flow field, which in turn is used to compute
advection–diffusion equations for species transfer (decoupled solution). Other modeling approaches for
diffusion broadening include decoupled two and three-dimensional solutions of advection–diffusion
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Fig. 1. Schematic of the diffusion broadening problem.
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equations, simplifying the problem for the part of the channel that does not depend on the streamwise
direction [32,33].

In this paper, the diffusion broadening problem has been employed at constant Peclet numbers and
densities ratios and at different Reynolds numbers, in order to assess the accuracy and efficiency of the
artificial-compressibility CB schemes. This includes investigation of the multigrid efficiency as well as
different variations of intercell variable interpolation. Furthermore, an assessment of the accuracy
and efficiency of the present methods has been carried out for variable-density temporal mixing-layer
flow, which is initiated by a hyperbolic tangent velocity profile (see Fig. 2). This problem has been
extensively studied for single fluid cases, including linear stability analysis [36], and has become an
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Fig. 2. Computational setup for the variable-density mixing layer problem.
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established test bed for comparison of different numerical schemes [37–41]. A temporal (reacting) shear
layer and the effect of non-uniform density on its development have been studied by Ghoniem et al.
[43,44]. The effect of non-uniform liquid entrainment resulting in displacement of the vortex-center
towards the lighter fluid has been observed in our computations and this is in accord with previous
studies [44–47].

The paper is organized as follows. In Section 2, a summary of the three variable-density formulations
and CB schemes used in this investigation is presented. Section 3 discusses the multigrid implementation
of the artificial-compressibility CB schemes. Section 4 presents numerical results for the 2-D and 3-D dif-
fusion broadening problems, while Section 5 presents results for the temporal variable-density mixing layer.
Finally, Section 6 summarizes the main conclusions drawn from the present research.
2. Numerical formulation

Our numerical model comprises of the incompressible Navier–Stokes equations, the species transport
equations for species densities and the artificial compressibility approach for coupling the continuity and
momentum equations. The artificial-compressibility for steady flow problems adds a pseudo-time pressure
derivative to the continuity equation [4]. For unsteady problems pseudo-time velocity derivatives need to be
added to the momentum equations and for variable density problems pseudo-time density derivatives also
need to be added to the densities transport equations. The pseudo-time velocity and densities derivatives are
required for coupling and solving the governing equations in pseudo-time, s. Based on the above, the non-
dimensional system of equations is written as
o~u
os

¼ � o~u
ot

� ð~u � rÞ~uþ 1

q
rp � 1
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r2~u

� �
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ð1Þ
At each real time step, t, the solution of the system (1) is obtained by iterating in pseudo-time, s, until
convergence is achieved within a prescribed convergence tolerance; thus the incompressibility (divergence
free) condition is satisfied at each time step. The parameters and variables in the above equations are
defined as follows: b is the artificial compressibility parameter; ~u is the velocity vector with components
(u, v, w) for the three Cartesian directions (x, y, z), respectively; q is the fluid density; p is the pressure;
and Rel = U0L/ml denotes the Reynolds number, where U0 and L denote reference values for the velocity
and spatial dimension, respectively, while ml is the local kinematic viscosity. The partial densities are de-
fined as qi (i = 1,N) for a flow containing N species and the total density is defined by the sum of partial
densities q ”

P
qi. Further, Pe = U0L/D and Dli stand for the Peclet number and (dimensionless) reduced

multicomponent diffusion coefficients matrix, respectively, where D is a reference diffusion coefficient
[48,49]. We write the system of equations in curvilinear coordinates
oJU
os

¼ � oJUr

ot
þ oEV

on
þ oFV

og
þ oGV

of
� oEI

on
� oFI

og
� oGI

of
� RHS; ð2Þ
where U = (p/b, qu, qv, qw, q, qi)
T, Ur = (0,qu, qv, qw, q, qk)

T and the inviscid, (EI, FI, GI), and viscous,
(EV, FV, GV), fluxes are given by
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The Cartesian inviscid ðEc
I ;F

c
I ;G

c
IÞ and viscous ðEc

V;F
c
V;G

c
VÞ fluxes are defined by
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ð4Þ
where sij stand for the components of the viscous stress tensor. The discretization of the inviscid terms is
obtained by characteristics-based schemes. These were derived in Part I [3], where it was shown that three
different schemes can be obtained depending on the formulation of the governing equations. These formu-
lations and the corresponding CB schemes are summarized below:

� Transport CB scheme. The equations for densities are written as advection equations1 in non-conserva-
tive form and these are used to eliminate the total density from the momentum equations of the conser-
vative system (2). The advective flux in, e.g., n-direction, is computed using the reconstructed primitive
variables (denoted by �tilde�) defined by
~p ¼ 1
2s ðk1p2 � k2p1 � bðR1 � R2ÞÞ;

~u ¼ u0 þ ~x
2sqR3;

~v ¼ v0 þ ~y
2sqR3;

~w ¼ w0 þ ~z
2sqR3;

~q ¼ q0;

~qi ¼ qi0;

i ¼ 1;N � 1;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5Þ
te that the CB schemes refer to the discretization of the advective fluxes.
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where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ b=q

q
; the eigenvalues of the inviscid matrix EI are given by k0 ¼ u~xþ v~y þ w~z (N � 1

eigenvalues), k1 = k0 + s and k2 = k0 � s. The auxiliary functions R1, R2 and R3 are given by
R1 ¼ ~xðu0 � u1Þ þ ~yðv0 � v1Þ þ ~zðw0 � w1Þ;
R2 ¼ ~xðu0 � u2Þ þ ~yðv0 � v2Þ þ ~zðw0 � w2Þ;
R3 ¼ p1 � p2 þ k2qR2 � k1qR1.

8><
>: ð6Þ
� Hybrid CB scheme. The conservative form of the equation for total density is used to eliminate the den-
sity variable from the momentum equations in (2), which are then solved in conjunction with the advec-
tion equations for species transport. The �tilde� variables are given by
~p ¼ 1
s ðk1p2 � k2p1 � bðR1 � R2ÞÞ;

~u ¼ u0 þ ~x
sqR3;

~v ¼ v0 þ ~y
sqR3;

~w ¼ w0 þ ~z
sqR3;

~q ¼ q0;

~qi ¼ qi0;

8>>>>>>>>><
>>>>>>>>>:

ð7Þ

where the auxiliary functions R1, R2 and R3 are defined by (6). In this case, the artificial speed of sound is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ 4 b

q

q
and the eigenvalues are k0 (N � 1 eigenvalues), k1 = (k0 + s)/2 and k2 = (k0 � s)/2.

� Conservative CB scheme. The conservative system (2) is solved without any reductions. The �tilde� vari-
ables are given by
~p ¼ 1
s ðk1p2 � k2p1 � bðR1 � R2ÞÞ;

~u ¼ u0 þ ~x
sqR3;

~v ¼ v0 þ ~y
sqR3;

~w ¼ v0 þ ~z
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s R3

� �
;

~qi ¼ qi0 þ qi
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s R3

� �
;
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where the auxiliary functions R1, R2 and R3 are defined by (6). In this case, the artificial speed of sound is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ 4 b

q

q
, k1 = (k0 + s)/2 and k2 = (k0 � s)/2.

In all the above cases the �tilde� variables are used to calculate the advective fluxes, where the character-
istics variables Vl = (pl, ul, vl, wl, ql, qi,l)

T (l = 0, 1, 2) are calculated by a Godunov type-scheme
V0 ¼ VLþVR

2
� signðk0Þ VR�VL

2
;

V1 ¼ VL;

V2 ¼ VR;

8><
>: ð9Þ
where sign(k0) = 1 or �1 for k0 > 0 and k0 < 0, respectively. The variables with indices �L� and �R� denote
left and right states of intercell values, which are calculated by polynomial interpolation, first-, second- or
third-order accurate [3]. Finally, we mention that the solution in pseudo-time is advanced by a fourth-order
Runge–Kutta scheme [50] in conjunction with a nonlinear multigrid method that is presented in the next
section.
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3. Multigrid acceleration

Many of the basic concepts introduced in multigrid methods for elliptic equations [10] are also applicable
to the present discussion, but the specific details are different due to the fundamental nature of the equa-
tions. In the present case, the multigrid method is applied to solve the coupled system of Eqs. (1). In prin-
ciple, multigrid can be implemented in conjunction with several grid levels, i.e., five, six or even more, and
this is often the case when multigrid is employed to solve elliptic equations such as the pressure-Poisson
equation. There are, however, numerical reasons on the basis of which one can argue in favor of a smaller
number of grid levels, e.g., 3 grid levels. If the grid on which the equations are to be solved is not fine
enough, then the coarsest grid will not encompass a sufficient number of grid points to provide a good cor-
rection for the fine grid. Numerical experiments have shown that in the case of (very) coarse grids the mul-
tigrid efficiency is significantly reduced. This has been observed in theoretical investigations of multilevel
algorithms for non-symmetric (e.g. [51,52]) and nonlinear problems (e.g. [53]). A smaller number of grids
also improves the efficiency of parallel computations, as has been demonstrated in previous studies by
Ålund et al. [55] and Axelsson and Neytcheva [56,57]. Finally, the use of several grid levels may increase
the complexity of the computer code and memory requirements.

For the case of steady flows, the solution of the equations can be obtained by a full multigrid–full
approximation storage algorithm (FMG–FAS) on a sequence of coarser grids and this solution can be used
as an initial guess for the multigrid procedure. The coarse grid computations provide a good initial guess
for the intermediate grid and the same procedure is repeated on the intermediate grid in order to provide a
good initial guess for the finest grid. The main steps of the V-cycle implementation of the three-grid algo-
rithm (fine, intermediate and coarse grids) are described below using the following notation (see also Fig.
3): P and R stand for the prolongation and restriction operators; Ncg and Nfg denote the Navier–Stokes
solution on the coarse and fine grids, respectively; 0cg is the initial condition used for the solution; �V stands
for the coarse grid function. The solution algorithm utilized for single grid calculations is also used as a
relaxation procedure (S) on the fine (Sfg) and intermediate grids (Sig), and as a solver on the coarse grid.
The various steps of the three-grid solution are listed below:
Fig. 3. Schematic of multigrid V-cycle, where m1, m2 and mcg stands for pre-relaxation, post-relaxation and coarse-grid iterations
performed on the three grid levels.
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� Perform m1 pre-smoothing iterations on the fine grid, symbolically written as Ufg := Sfg(Ufg, 0fg, m1).
� Compute finest grid defect, dfg := NfgUfg.
� Restriction of the defect to the intermediate grid dig := Rdfg.
� Compute the right-hand side – RHS in (2) – of the Navier–Stokes equations on the intermediate grid,
fig :¼ �d ig þ N igV ig. The term V ig is defined according to Brandt [58] (see discussion below).

� Perform m1 pre-smoothing iterations on the intermediate grid, V ig :¼ SigðV ig; fig; m1Þ.
� Compute intermediate grid defect, dig := �fig + NigVig.
� Restriction of the defect to the coarse grid, dcg := Rdig.
� Compute the right-hand side of the equations on the coarse grid, fcg :¼ �dcg þ N cgV cg. The term V cg is
defined according to Brandt [58] (see discussion below).

� Compute coarse grid approximate solution, V cg :¼ N�1
cg fcg.

� Compute correction on the coarse grid, ccg :¼ V cg � V cg.
� Prolongation of the correction to the intermediate grid, cig := Pccg.
� Correct solution on the intermediate grid, Vig := Vig + cig.
� Perform m2 post-smoothing iterations on the intermediate grid, V ig :¼ SigðV ig; fig; m2Þ.
� Compute correction on the intermediate grid, cig :¼ V ig � V ig.
� Prolongation of the correction to the finest grid, cfg := Pcig.
� Correct solution on the finest grid, Ufg := Ufg + cfg.
� Perform m2 post-smoothing iterations on the finest grid, U fg :¼ SfgðU fg; 0fg; m2Þ.

The pre-smoothing, post-smoothing and coarsest grid iterations are performed by a fourth-order Runge–
Kutta scheme to march the solution in pseudo-time. Note that the Navier–Stokes solver used on the coarse
and intermediate grids is slightly different than the original single-grid solver because the RHS of the Navier–
Stokes equations becomes zero (upon achieving convergence) only for the single-grid algorithm. In the case
of the multigrid method the right-hand side of the equations in the coarse and intermediate grids is not zero
due to the additional terms (e.g., NigVig) arising from the FAS linearization procedure. For unsteady flows
the multigrid V-cycles are performed at each time step (Fig. 4). Larger time steps can be used on the coarse
and intermediate grids to further reduce the number of iterations on these grid levels.

In the case of linear equations the multigrid solution on the fine grid can be directly computed on coarser
grids using the same solution matrix and with the restricted defect being the RHS of the equations. How-
ever, this will not lead to efficient solutions in the case of nonlinear problems. In this case the multigrid
corrections are formed as differences between some basic reference solution and the currently computed
xy

τ

Fine

Intermediate

Coarse

Multigrid V cycles in pseudo-time τ

Fig. 4. Schematic of multigrid implementations for time-dependent problems. Multigrid V-cycles are performed at each real time step
in order to achieve convergence in pseudo-time s.
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approximation of this solution. Therefore, the three-grid FAS algorithm requires the calculation of the so-
called coarse-grid functions. In the case of the three-grid algorithm these functions need to be defined for
the coarse, V cg, and intermediate grids, V ig, respectively. Here, we follow the strategy suggested by Brandt
[58] that is to calculate these functions as projections of the current intermediate and finest grid solutions
onto the coarse and intermediate grids, respectively: V cg ¼ RV ig, V ig ¼ RU fg, where R is the restriction
operator.

The efficiency of the multigrid solution depends on the relaxation steps at different grid levels, i.e., pre-
(m1) and post-relaxation (m2) iterations, as well as iterations on the coarse grid (mcg). We have performed
several numerical experiments, which have shown that for the �unsteady-type� multigrid employed here, the
equations do not have to fully converge on the coarsest grid for achieving the best multigrid efficiency.
Moreover, numerical experiments have indicated that although the number of pre- and post-relaxation iter-
ations depends on the flow case, 6–12 iterations are sufficient. In order to comparatively examine the effi-
ciency of different CB schemes in variable-density flow computations, we have used fixed multigrid cycle
parameters for all test cases, comprising of 10 pre-smoothing and post-relaxation iterations on the fine grid;
no pre-smoothing and 10 post-relaxation iterations on the intermediate grids; and 1500 iterations on the
coarsest grid; computations on each grid level are performed until either the maximum number of iterations
is reached or the solution is converged.

The implementation of multigrid requires restriction and prolongation operators to be defined. The
restriction operator can be simply defined by considering that any coarse-grid control volume (CV) consists
of eight fine grid CVs (in three dimensions). In simple geometries, this can be achieved by covering the com-
putational domain with a coarse grid and further refine it in such a way that any coarse-grid volume is split
into eight fine-grid volumes. For complex geometries it is better to first generate the finest grid, and then
construct the coarser grids by eliminating lines of the fine grid. Then, the restriction operator is defined
by the weighted summation of all the values over the fine-grid CVs.

Multigrid algorithms can be implemented using different prolongation operators. The simplest definition
of the prolongation operator is the linear interpolation (Fig. 5). If Uf and Uc are the values of the variable U
on the fine and coarse grids, respectively, and assuming that in one dimension the fine-grid cells with indices
(2i � 1) and (2i) will form a coarse-grid cell (i), then the fine-grid values are obtained by the coarse-grid ones
as follows:
U f
2i ¼

1

4
U c

iþ1 þ
3

4
U c

i ; U f
2iþ1 ¼

3

4
U c

iþ1 þ
1

4
U c

i . ð10Þ
For two- and three-dimensional cases, bilinear or trilinear prolongation formulas can be obtained by
combining one-dimensional linear interpolation. If (2i, 2j, 2k) are the indices of the fine-grid cell in three
dimensions, the trilinear prolongation operator is then defined by
U f
2i;2j;2k ¼

1

64
U c

iþ1;jþ1;kþ1 þ
3

64
U c

iþ1;jþ1;k þ
3

64
U c

iþ1;j;kþ1 þ
3

64
U c

i;jþ1;kþ1 þ
9

64
U c

iþ1;j;k þ
9

64
U c

i;jþ1;k

þ 9

64
U c

i;j;kþ1 þ
27

64
U c

i;j;k. ð11Þ
Fig. 5. Schematic of the one-dimensional linear interpolation.
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4. Diffusion broadening studies

The diffusion broadening problem (Fig. 1) provides a test bed for investigating the accuracy and effi-
ciency of the numerical methods discussed here. The flow setup comprises of two miscible fluids of different
densities entering a channel of rectangular cross section through two rectangular inlets and flowing in a
microfluidic slit. Ismagilov et al. [30] derived analytic solutions for the dependence of the diffusion front
position on the distance from the inlets and found that the position of the diffusion front is proportional
to x

1
2 in the middle of the channel and to x

1
3 near the wall. These results were found to be in good agreement

with experiments [30,31], approximate models [32,33] and solutions of the diffusion equations based on �fro-
zen� flow conditions [31], i.e., solving only the advection–diffusion equations for species transport for a pre-
scribed flow field. In our numerical investigation we have considered both 2-D and 3-D flows at low
Reynolds numbers typical for microfluidic applications, Re 2 [25, 100], and for a fixed value of Peclet num-
ber Pe = 103. Density variations are typically small in diffusion broadening problems, where usually both
streams contain a dilute solution of diffusing species. In the present study and in order to assess the ability
of the numerical schemes to accurately capture the contact discontinuity, the dimensionless densities of the
two fluids were chosen to be 1.0 and 0.8, respectively. Moreover, we considered both fluids having the same
viscosity in order to reduce the number of parameters involved in the investigation. The velocity boundary
condition at the inlets is given by a parabolic profile normalized by the maximum inlet velocity. At the out-
let the velocities are obtained by extrapolation considering that the channel is long enough to allow fully
developed flow to be established. The pressure is considered constant and equal to 1 (dimensionless) at
the outlet, while it is obtained by linear extrapolation in the boundary cells at the inlet. The densities of
the fluids are constant at the inlets, with each inlet occupied by one fluid. As an initial condition, we have
employed parabolic velocity profiles and constant pressure equal to 1 everywhere. Initially, the heavier fluid
occupies one inlet and the channel downstream, while the second inlet is occupied by the lighter fluid. For
the present problem and Reynolds number, the no-slip boundary condition on the wall is still valid. The
computational grid has been clustered near the entrance of the main section. In the 2-D computations,
the fine grid contained 37 · 37 and 197 · 73 grid points in the inlets and main sections, respectively. In
the 3-D computations, the fine grid contained 17 · 17 · 17 and 57 · 33 · 17 grid points in the inlets and
main sections, respectively. Fig. 6(a) shows the grid used in the 2-D computations near the entrance to
the main section; the coordinates were non-dimensionalized using the inlet height as a characteristic length.
The CFL numbers used for defining the time steps (the pseudo-time step depends on the CFL number for
stability reasons) for the 2-D and 3-D computations were 0.2 and 0.1, respectively. Computations have been
carried out both for 2-D and 3-D cases with channel lengths 27 and 40 inlet heights for the 3-D and 2-D
cases, respectively, and inlet length of one inlet height in both cases. The development of the flow field for
the 2-D case in the entrance section is shown in Fig. 6(b) by means of u-velocity contours. The results in this
figure have been obtained for Re = 50 using the conservative CB scheme with third-order polynomial inter-
polation.2 The slight asymmetry of the streamlines in Fig. 6(b) is due to the fact that the flow is not yet fully
developed. For the 2-D case, an exact analytic solution is available for the velocity of the fully developed
flow in the main section of the channel [42]; this is a parabolic profile since the fluids hold the same viscos-
ities. The development of the velocity profile as computed using the conservative CB scheme is shown in
Fig. 7(a), while Fig. 7(b) shows the comparison between analytic and computed solutions. Analytic esti-
mates [30] indicate that the diffusion profile for a 2-D case is governed by a power law with exponent
0.5. In our investigation, for a 2-D case we have defined the diffusion front position as the point where spe-
cies density falls below 20% of its density at the inlet (the position of diffusion front inside a grid cell was
obtained by linear interpolation). Fig. 8 shows the development of diffusion fronts, in logarithmic scale, as
2 The Reynolds number calculation is based on the maximum inlet velocity, viscosity of the fluids at the inlet and inlet height.
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Table 1
Accuracy of 2-D diffusion broadening slopes computations on the basis of percentage differences from the analytic solution

Numerical scheme Interpolation order

1st order (%) 2nd order (%) 3rd order (%)

Conservative CB scheme 3.10 1.28 0.46

Hybrid CB scheme 3.22 1.30 0.46

Transport CB scheme 3.06 1.30 0.46

E. Shapiro, D. Drikakis / Journal of Computational Physics 210 (2005) 608–631 619
obtained by different CB schemes (transport, conservative and hybrid) and different orders of polynomial
interpolation. As expected, the results show that the power-law dependency is established only in the region
along the channel where the velocity profile is fully developed. For the 2-D case (Fig. 8), a deviation of 5%
for the u-velocity value at the center line of the main channel from its value when the flow becomes fully
developed flow, was reached at the distance of 3.5 inlet heights. The deviations of the computationally
obtained slopes from the analytic value of 0.5 are summarized in Table 1. The accuracy of the solution
increases with the order of interpolation. The discrepancies between different CB schemes are below
0.16% and further decrease as we increase the order of polynomial interpolation.

Fig. 9 shows cross section density profiles in the main channel. These profiles provide information about
how accurately the contact discontinuity has been resolved. The best results were obtained by third-order
interpolation. The resolution of discontinuity exhibited no significant dependence on the variables recon-
struction method, with the results varying slightly for the first-order interpolation but becoming identical
for all CB schemes when using third-order interpolation. All the CB schemes investigated here are nomi-
nally second-order accurate. Nevertheless, the accuracy of the computational results depends on the poly-
nomial interpolation as shown by the calculation of the diffusion slopes in Table 1. To numerically examine
the order of accuracy obtained by different polynomial interpolations, we have carried out grid convergence
studies using three uniform grids containing 28 · 24, 56 · 48 and 112 · 96 computational cells in the main
channel section, respectively. We have used the average of the absolute value of the u-velocity throughout
the computational domain, uav, in order to analyze the grid convergence for all the CB schemes and orders
of polynomial interpolation. The grid convergence, ngr, can be estimated as
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Table 3
Predicted orders of accuracy for different CB schemes and variables interpolation in relation to the diffusion broadening computations

1st order 2nd order 3rd order

Transport CB scheme 1.71 1.99 1.98

Hybrid CB scheme 1.67 1.96 1.93

Conservative CB scheme 1.67 1.95 1.92

Table 2
Number of multigrid cycles required to reach convergence for 2-D diffusion broadening computations at Re = 50

1st order 2nd order 3rd order

Transport CB scheme 33 44 171

Hybrid CB scheme 26 (�21%) 36 (�18%) 134 (�22%)

Conservative CB scheme 24 (�27%) 32 (�27%) 115 (�33%)

The values in brackets give the percentage reduction in the number of multigrid cycles compared to the transport CB scheme (slowest
convergence).
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where ucoarseav , umedium
av and ufineav are the average velocity values obtained on the coarse, medium and fine grids,

respectively. The results of Table 3 show that second-order of accuracy (approximately) is obtained by the
transport, hybrid and conservative CB reconstructions, where the small discrepancies between second and
third-order polynomial interpolations are within the error margin of the convergence rate estimation.

To examine the convergence behavior of different schemes variants we have used as convergence crite-
rion the maximum of the solution variation within a pseudo-time step (complete Runge–Kutta cycle) nor-
malized by the maximum variation obtained in the first step of the pseudo-time iteration; this criterion is
henceforth labeled as Runge–Kutta residual. The solution was considered to be converged when the initial
Runge–Kutta residual had been reduced by three-order of magnitudes, which corresponds to actual mag-
nitude of solution difference of the order 10�5–10�6.

Fig. 10 shows the Runge–Kutta residual norms for 2-D computations at Re = 50 for the three variants
of the CB schemes using first-order (Fig. 10(a)), second-order (Fig. 10(b)) and third-order polynomial inter-
polations (Fig. 10(c)). The conservative CB scheme consistently exhibits faster convergence rates. The ac-
tual number of multigrid cycles required to reach convergence is summarized in Table 2, where the values in
Fig. 10. Multigrid convergence for 2-D diffusion broadening computations using different CB schemes and orders of variables
interpolation: (a) first-order interpolation; (b) second-order interpolation; (c) third-order interpolation.
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brackets give the percentage reduction in the number of multigrid cycles compared to the transport CB
scheme (slowest convergence).

In addition to the 2-D numerical studies, 3-D computations were also performed. The diffusion front
and u-velocity development for the 3-D case are shown in Fig. 11. The diffusion front position was defined
as the point where species density falls below 20% of its density at the inlet. Fig. 12 shows the position of the
diffusion front (in log scale) calculated on the channel�s wall and centerline at Re = 50, for the three CB
schemes, conservative (Fig. 12(a)), hybrid (Fig. 12(b)) and transport schemes (Fig. 12(c)). The experimental
diffusion front slopes correspond to the ones obtained in [30,31]. The results shown in Fig. 12 were obtained
using third-order polynomial interpolation. Note that the power-law dependency as obtained by analytic
estimations [30] is not applicable in the entrance region, where the flow is not yet fully developed.
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Fig. 11. Development of the diffusion front in 3-D computations.
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Fig. 12. Comparison of diffusion front predictions with experimental data [30,31] (3-D case, Re = 50): (a) conservative CB scheme; (b)
hybrid CB scheme; (c) transport CB scheme.



Fig. 13. Diffusion front development (3-D case, Re = 50) as predicted by different CB schemes and orders of variable interpolation: (a)
conservative CB scheme; (b) hybrid CB scheme; (c) transport CB scheme.
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Fig. 13 shows the dependency of the diffusion fronts on the order of polynomial interpolation for con-
servative (Fig. 13(a)), hybrid (Fig. 13(b)) and transport schemes (Fig. 13(c)) of CB schemes. The deviation
of the calculated slopes from the experimental values in the channel�s centerline and on the channel�s wall
are summarized in Tables 4 and 5, respectively. The conservative scheme in conjunction with second/third
order interpolations provides overall the best results. This is shown with respect to the calculation in the
channel�s centerline. The results on the wall exhibit a slightly different tendency with the transport and hy-
brid CB schemes, first-order interpolation based, to provide the best accuracy; noting, however, that the
discrepancies of the conservative, CB scheme against the experimental results is also very small.

The efficiency of the computations in terms of multigrid convergence was found to be dependent on the
CB scheme employed. Fig. 14 shows the Runge–Kutta residual norms for all CB schemes (3-D computa-
tions at Re = 50) for first (Fig. 14(a)), second (Fig. 14 b) and third-order polynomial interpolation (Fig.
14(c)), respectively, in logarithmic scale.The conservative CB scheme provided the best (fastest) multigrid
convergence regardless of the polynomial interpolation used. The transport CB scheme resulted in the
Table 4
Accuracy of 3-D diffusion broadening slopes computations in the channel�s centerline on the basis of percentage differences from the
experimental data

Numerical scheme Interpolation order

1st order (%) 2nd order (%) 3rd order (%)

Conservative CB scheme 1.73 1.26 1.13

Hybrid CB scheme 1.42 1.30 1.17

Transport CB scheme 1.45 1.30 1.18

Table 5
Accuracy of 3-D diffusion broadening slopes computations on the channel�s wall on the basis of percentage differences from the
experimental data

Numerical scheme Interpolation order

1st order (%) 2nd order (%) 3rd order (%)

Conservative CB scheme 0.90 0.73 0.78

Hybrid CB scheme 0.66 0.79 0.73

Transport CB scheme 0.66 0.77 0.78



Fig. 14. Multigrid convergence for different CB schemes (3-D diffusion broadening case, Re = 50): (a) first-order interpolation; (b)
second-order interpolation; (c) third-order interpolation.
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slowest convergence. The number of multigrid cycles required to reach convergence is also summarized in
Table 6, where the values in brackets give the percentage reduction of the number of multigrid cycles com-
pared to the transport CB scheme (slowest case).

Finally, numerical tests were performed to examine the convergence behavior at different Reynolds num-
bers. In Fig. 15 results are presented for different Reynolds numbers and orders of polynomial interpolation
in conjunction with the conservative CB scheme. Further, in Table 7 the convergence results, in terms of
total multigrid cycles, are given for the three CB schemes. The results show that: (i) the numerical conver-
gence is improved at higher Reynolds numbers for all CB schemes; and (ii) the conservative CB scheme
yields better convergence for all Reynolds numbers (see Table 7).
5. Variable-density mixing layer

Computations have also been performed for a 2-D, inviscid, variable-density, temporally developed,
mixing layer in order to gain insight into the dissipative properties of the characteristics-based schemes
as well as multigrid efficiency in combination with different polynomial interpolations. The setup of the
problem comprises of a variable-density mixing layer defined by hyperbolic tangent velocity and density
profiles (Fig. 2)
Table
Numb

Transp

Hybrid

Conser
q ¼ 2þ tanhðyÞ;
u ¼ tanhðyÞ;

	
ð13Þ
where the density ratio between the streams q0/q1 = 3. Sinusoidal wave perturbations are imposed to the
profiles. The wave number, a, of the perturbations corresponds to the most unstable mode for a single-fluid
mixing layer with the same velocity profile, i.e., a = 0.4446 and wavelength k. 14.13 [36]. The amplitude of
the perturbations is taken to be 1% of the wavelength. For the purpose of the numerical experiments the
6
er of multigrid cycles required to reach convergence for 3-D diffusion broadening computations at Re = 50

1st order 2nd order 3rd order

ort CB scheme 124 141 378

CB scheme 90 (�27%) 102 (�28%) 301 (�20%)

vative CB scheme 76 (�39%) 89 (�37%) 275 (�27%)



Fig. 15. Dependence of multigrid convergence on the Reynolds number for the diffusion broadening problem: (a) first-order
interpolation; (b) second-order interpolation; (c) third-order interpolation.

Table 7
Number of multigrid cycles required to reach convergence for 3-D diffusion broadening computations at different Reynolds numbers

Re = 25 Re = 50 Re = 75 Re = 100

Transport CB scheme 144 124 104 92

Hybrid CB scheme 108 (�25%) 90 (�27%) 75 (�28%) 71 (�23%)

Conservative CB scheme 99 (�31%) 76 (�39%) 67 (�36%) 63 (�32%)
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problem is considered to be inviscid and, therefore, diffusion cannot occur because both diffusion and vis-
cosity have the same molecular origin. In the absence of viscosity, diffusion can occur in the case of a dilute
solution or particles diffusion (see, e.g. [54]).

The dimensions of the computational domain correspond to two wavelengths of the initial perturbation,
i.e., {(x, y) :x 2 [0, 2k], y 2 [�k, k]}. The computational grid consists of 117 · 117 grid points. We have
used periodic boundary conditions on the left and right boundaries and no-slip boundary conditions on
the upper and lower boundaries in the y direction. All unsteady computations were performed with
CFLp = 0.07 in pseudo-time and CFLr = 0.2 in real time, where for the present problem the pseudo-time
and real time steps are defined by Dsi,j,k = CFLp/(maxm=1–6{(jk1j, jk2j)}m)i,j,k and Dti,j,k = CFLr/(maxm=1–6

{(jk1j,jk2j)}m)i,j,k, respectively, where m stands for the six faces of the computational cell in 3-D.
The evolution of the mixing layer is illustrated in Fig. 16 by means of the density contours at different

time instants. These results have been obtained by the conservative CB scheme and third-order polynomial
interpolation. The results show that the center of the vortex is displaced towards the lighter fluid as also
predicted in previous studies [44,46,47]. Fig. 17 shows the density contours at dimensionless time t = 25
as obtained by using the conservative CB scheme in conjunction with first-, second- and third-order inter-
polation. The least dissipative solution is obtained by third-order interpolation, while the first-order inter-
polation gives very dissipative results. The discrepancies between second and third-order are not significant
on the 117 · 117 grid (Fig. 16), but become greater as the grid is further coarsened. Fig. 18 illustrates devel-
opment of the density layer on a coarser grid (57 · 57), as obtained by the conservative CB scheme and
third-order polynomial interpolation. Fig. 19 compares the density contours at dimensionless time t = 25
using the conservative CB scheme in conjunction with first-, second- and third-order interpolation on
the coarse grid. It can be seen that the third-order interpolation significantly reduces numerical dissipation.
Fig. 20 shows the development of the mixing layer thickness in time as obtained by different CB schemes in
conjunction with different orders of interpolation. The results exhibit slight differences when the CB
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Fig. 17. Numerical solution at t = 25 (dimensionless) as predicted by the conservative CB scheme using different orders of variable
interpolation: (a) first-order interpolation; (b) second-order interpolation; (c) third-order interpolation.
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schemes are used with first-order interpolation but overall the choice of the CB scheme has negligible effects
on the results. Furthermore, Fig. 21 shows the mixing layer thickness dependency on the order of polyno-
mial interpolation for conservative, hybrid and transport schemes. Both second- and third-order variants
exhibit very similar results.
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Fig. 19. Numerical solution on the coarse grid (57 · 57) at t = 25 (dimensionless) as predicted by the conservative CB scheme using
different orders of variable interpolation: (a) first-order interpolation; (b) second-order interpolation; (c) third-order interpolation.
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The convergence performance was investigated for different CB schemes and interpolation variants. For
unsteady flows, the norm of the variables derivatives in pseudo-time was employed as parameter to monitor
convergence at each time step. The solution was considered to converge when the maximum of all norms
reached 10�4. For the artificial-compressibility-based methods considered in this study, we have observed
that the maximum number of multigrid cycles required to reach convergence occurs in the first time step.
This is due to the nature of the artificial-compressibility formulation, which cannot satisfy the divergence-
free constraint per se, but instead requires this to be iteratively obtained. Therefore, we have used two cri-
teria to compare multigrid convergence of different schemes: the first one is the number of multigrid cycles
required to reach convergence at the first time step and the second one is the total number of multigrid
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Fig. 20. Dependence of mixing layer thickness on the CB scheme employed in the computations: (a) first-order interpolation; (b)
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Fig. 21. Mixing layer thickness dependence on the order of variables interpolation. The difference between the second- and third-order
interpolation appearing for t > 15 remain less than 2.5% even at late times, t > 25: (a) conservative CB scheme; (b) hybrid CB scheme;
(c) transport CB scheme.
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Fig. 22. Multigrid convergence for the mixing layer flow using different CB schemes and orders of variables interpolation: (a) first-
order interpolation; (b) second-order interpolation; (c) third-order interpolation.
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Fig. 23. Multigrid convergence dependence on the order of variables interpolation, for the mixing layer flow: (a) conservative CB
scheme; (b) hybrid CB scheme; (c) transport CB scheme.

Table 8
Number of multigrid cycles required to reach convergence at the first time step for the mixing layer problem

1st order 2nd order 3rd order

Transport CB scheme (fine grid) 14 25 25

Hybrid CB scheme (fine grid) 8 15 15

Conservative CB scheme (fine grid) 8 15 15

Transport CB scheme (coarse grid) 12 33 25

Hybrid CB scheme (coarse grid) 10 25 18

Conservative CB scheme (coarse grid) 10 25 18

Table 9
Number of multigrid cycles required for t = 30 (dimensionless)

1st order 2nd order 3rd order

Transport CB scheme (fine grid) 580 1762 1748

Hybrid CB scheme (fine grid) 431 (�26%) 1289 (�27%) 1156 (�34%)

Conservative CB scheme (fine grid) 375 (�35%) 1267 (�28%) 1150 (�34%)

Transport CB scheme (coarse grid) 644 4687 3620

Hybrid CB scheme (coarse grid) 580 (�10%) 3801 (�19%) 2268 (�37%)

Conservative CB scheme (coarse grid) 534 (�17%) 3672 (�22%) 2254 (�38%)
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cycles throughout the computation up to a prescribed time instant (t = 30, dimensionless, in the present
numerical experiments). Figs. 22 and 23 show the reduction of the residual norm in pseudo-time (first real
time step) for the three CB variants in conjunction with first-, second- and third-order interpolation
schemes. The hybrid and conservative schemes exhibit the same convergence, whereas the transport variant
results in slower convergence. The number of multigrid cycles required to reach convergence at the first time
step is listed in Table 8 both for coarse and fine grid computations. Interestingly, second and third-order
interpolation schemes require the same number of multigrid cycles on the fine grid. However, if we consider
the multigrid cycles for the entire computation (see Table 9, results corresponding to t = 30), it is seen that
the third-order interpolation results in faster convergence speed compared to second-order. In Table 9, the
values in brackets give the percentage reduction of the number of multigrid cycles compared to the trans-
port scheme (slowest method). As expected, the difference between second and third-order interpolation
schemes in terms of multigrid cycles is reduced when refining the grid. Overall, the results reveal that similar
to the diffusion broadening studies the conservative CB scheme provides the best multigrid convergence.
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6. Conclusions

A numerical study for the accuracy and efficiency of artificial-compressibility CB schemes for vari-
able-density incompressible flows, was presented. The study involved three different CB schemes in con-
junction with three intercell interpolation variants and multigrid acceleration. The differences in the
design of the CB schemes arise from the origin of the variable-density formulation of the governing
system of equations. Both steady and unsteady flow problems were employed to assess the accuracy
and efficiency of the schemes. The steady flows cases concerned 2-D and 3-D diffusion broadening flows
through microfluidics and the unsteady flow concerned the temporal development of a variable-density
mixing layer.

The results for all CB schemes were found to be in good agreement with analytical and experimental
data with better results being obtained when using the CB schemes in conjunction with second and
third-order intercell interpolation. It was, however, shown that multigrid convergence depends on the
CB variant as well as on the polynomial interpolation used at the cell faces of the computational
volume.

The (viscous) flow computations through microfluidics showed that the conservative CB scheme exhibits
better multigrid convergence compared to the hybrid and transport schemes, e.g., for 3-D computations the
conservative CB scheme resulted in up to 39% reduction in multigrid cycles compared to the transport CB
scheme. This can be explained by the fact that the conservative formulation has a direct effect on the speed
of density disturbances during the pseudo-time iterations. The computations also revealed that the differ-
ence, in terms of multigrid cycles required to achieve convergence, between hybrid and conservative
schemes is smaller compared to that between hybrid and transport schemes. Both in transport and hybrid
schemes, the densities are reconstructed along streamlines and, essentially, the only difference between these
two formulations is the absence of the velocity divergence condition from the momentum equations that are
used in the CB reconstruction [3]. The inviscid mixing layer computations showed that the difference
between hybrid and conservative CB schemes in terms of multigrid cycles is smaller in this case than in
the diffusion broadening computations. This indicates that the appearance of the pseudo-compressibility
term in the densities (reconstruction) formulas has a stronger effect on the multigrid convergence in the case
of viscous problems.

Furthermore, the numerical convergence is also dependent on the intercell interpolation. The computa-
tions showed that more multigrid cycles are required when increasing the order of intercell variable inter-
polation. Since reasonable accuracy for the diffusion broadening problem was obtained by all orders of
polynomial interpolation, one may consider the tradeoff between convergence speed and accuracy, espe-
cially when dealing with 3-D problems and fine grids. For the diffusion broadening problem the best com-
promise seems to be achieved by second-order interpolation.

Finally, in [3] we showed that in the limit of constant density incompressible flows the transport CB
scheme corresponds to the original characteristics-based scheme for incompressible, constant density flows
[7,6], whereas the hybrid and conservative CB schemes lead to a new variant of the CB scheme for incom-
pressible, constant-density flows. The multigrid convergence tests performed in this paper reveal that the
conservative CB variant provides the best convergence among the three schemes. This motivates further
investigation of the behavior of this scheme for constant-density flows and research in this direction is
currently in progress.
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